Energetics of elementary reaction steps relevant for CO oxidation: CO and O2 adsorption on model Pd nanoparticles and Pd(111).

نویسندگان

  • Matthias Peter
  • Sergey Adamovsky
  • Jose Manuel Flores Camacho
  • Swetlana Schauermann
چکیده

The energetics of elementary surface processes relevant for CO oxidation, particularly CO and 02 adsorption, were investigated by a direct calorimetric method on model Pd nanoparticles and on the extended Pd(111) single crystal surface. The focus of this study lies on a detailed understanding of how a nanometer scale confinement of matter affects the binding strength of gaseous adsorbates. We report adsorption energies and sticking coefficients of CO and 02 measured as a function of the adsorbate surface coverage both on pristine and O-covered Pd surfaces. The reduced dimensions of the Pd substrate were found to affect the binding strength of the adsorbates in two principle ways: (i) via the change of the local adsorption environment that can result e.g. in stronger adsorbate bonding at the particle's low coordinated surface sites and (ii) via the contraction of the Pd lattice in small clusters and a concomitant weakening of chemisorptive interaction. Particularly for 02 adsorption, the change of the adsorption site from a three-fold hollow on Pd(111) to the edge site on Pd nanoparticles (approximately 4 nm sized on average) was found to result in a strong increase of the Pd-O bond strength. In contrast, CO adsorbs weaker on Pd nanoparticles as compared to the extended Pd(111) surface. In total, the binding energies of adsorbates on Pd and with this their surface coverages turn out to depend in a non-monotonic way on the particular structure of Pd surfaces, including the local structure of the adsorption site as well as the global properties of the small clusters arising e.g. from the lattice contraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C3fd00001j 341..354

The energetics of elementary surface processes relevant for CO oxidation, particularly CO and O2 adsorption, were investigated by a direct calorimetric method on model Pd nanoparticles and on the extended Pd(111) single crystal surface. The focus of this study lies on a detailed understanding of how a nanometer scale confinement of matter affects the binding strength of gaseous adsorbates. We r...

متن کامل

Low-Temperature CO Oxidation Catalyzed by Free Palladium Clusters: Similarities and Differences to Pd Surfaces and Supported Particles

The catalytic low-temperature oxidation of CO to CO2 with molecular oxygen is of particular industrial and ecological interest. Gas-phase reaction kinetics measurements in conjunction with first-principles calculations provide comprehensive insight into the mechanisms and energetics of the low-temperature CO combustion reaction catalyzed by small free palladium clusters Pdx + (x = 2−7). Similar...

متن کامل

CO Adsorption-Driven Surface Segregation of Pd on Au/Pd Bimetallic Surfaces: Role of Defects and Effect on CO Oxidation

We use density functional theory (DFT) to study CO-adsorption-induced Pd surface segregation in Au/Pd bimetallic surfaces, dynamics of Pd−Au swapping, effect of defects on the swapping rate, CO-induced Pd clustering, and the reaction mechanism of CO oxidation. The strong COphilic nature of Pd atoms supplies a driving force for the preferential surface segregation of Pd atoms and Pd cluster form...

متن کامل

Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry.

The heat of adsorption and sticking probability of CO on well-defined Pd nanoparticles were measured as a function of particle size using single crystal adsorption microcalorimetry. Pd particles of different average sizes ranging from 120 to 4900 atoms per particle (or from 1.8 to 8 nm) and Pd(111) were used that were supported on a model in situ grown Fe(3)O(4)/Pt(111) oxide film. To precisely...

متن کامل

Oxygen Activation and Reaction on Pd−Au Bimetallic Surfaces

Pd−Au bimetallic catalysts have shown promising performance for a number of oxidative reactions. The present study utilizes reactive molecular beam scattering (RMBS), reflection−absorption infrared spectroscopy (RAIRS), temperatureprogrammed desorption (TPD), and density functional theory (DFT) techniques in an attempt to enhance the fundamental understanding of oxygen activation and reaction w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2013